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synopsis 

Geometric requirements, avoidance of boundary conditions, and focus on configurational 
properties have suggested mean field formulation of the many chain problem Using discrete single 
chain Gaussian partition functions. Mean field account of energetic, combinatonal, and configura- 
tional contributions to the free energy provides correct reduction in the limit of remote confine- 
ment and avoidance of double counting of interactions. Strong influence of surface adsorption on 
configurational and global properties of spatial distribution is predicted to occur at lower 
concentrations. The interplate surface tension has been calculated *in decoupled conditions (large 
separation distances between plates). Numerical results predict an approximate power law 
dependence of the surface tension on the concentration with exponent - 1.3. Perfectly repulsive 
boundaries and athermal solvent conditions have been assumed for this calculation. 

INTRODUCTION 

The mean field analysis of polymer systems between plates has followed 
three main lines so far: (1) lattice (2) effective single chain statisti- 
cal approachesY6t6 and (3) variational treatments.’*8 The second approach is 
more suitable for the investigation of configurational properties, i.e., end-to-end 
distances, radii of gyration, and scattering functions. Classical treatments5p6 
using the diffusion equation formalism must define the boundary conditions 
a priori. Therefore, we have decided to reformulate the problem in terms of 
confined Gaussian partition functions. The existence of rigid boundaries 
suggests proper choices for the spacing between successive beads, as we will 
see. Mean field treatments are useful for concentrated systems. Furthermore, 
thermodynamic equilibrium with the bulk solution has to be investigated 
properly. To this extent, a satisfactory account of translational, combina- 
tonal, and energetic degrees of freedom must both provide reduction to 
Flory-Huggins form in the unconfined limit and possible separation of combi- 
natorial from energetic effects, leading to different forms of the respective free 
energy functionals of the density profile, as we will see. Avoidance of improper 
counting of interactions requires also “bare” redefinition of the configura- 
tional term of the free energy. All these features are discussed in the following 
sections. The calculated density profile does not vanish in the vicinity of the 
plates and tends to uniformity at higher densities. Correct formulation of 
boundary conditions, configurational restrictions, and results obtained for 
density profile and surface tension confirm the general validity of our pro- 
posed method. Configurational contributions are predicted to dominate the 
surface tension of sharply confined solutions. In the case of surface adsorption, 
the predicted dependence of the density profile on the monomer adsorption 
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energy is remarkably sharp at low concentrations as expected from single 
chain systems. A model system of 22 Gaussian beads has been used for all 
calculations. 

PACKING ENTROPY AND EN'I'HAWY OF DENSE POLYMER 
CHAIN SYSTEMS BETWEEN PLATES 

In this section, we evaluate the combinatorial entropy of a set of chains 
having prescribed position and configuration between fixed plates. Counting of 
possible configurations and calculation of energetic contributions have to be 
done in separate step, consistently with a given assumed profile of the 
volume fraction, +(x). The translational degreea of freedom are conveniently 
shifted from the packing to the configurational term of the free energy in 
order to simplify proper account of geometric requirements. The combina- 
torial partition function 2, is 

where np is the number of molecules and x ranges between - L / 2  and L/2, 
L being the plate separation dibtance. The chains are placed into the lattice 
sequentially and Cpi(x) is the profile of the polymer volume fraction seen by 
the (i + 1)th chain. We assume k(x) = (i /np)+(x).  Equation (1) holds for 
assigned configurations of all the chains. If the density is constant, each factor 
must be completed by adding its configurational degeneracy, not influenced by 
interactions with the environment. However, in the presence of inhomoge- 
neous concentration fields, the release of configurational degreea of freedom 
yielding the corresponding term of the free energy must be allowed on the 
fully packed system only. This difference from homogeneous systems legiti- 
mizes separation of steps. The individual contributions are 

where N, is the number of statistically independent packing units of the 
general chain. N, does not coincide with N, the total number of independent 
configumtional units, especially in the presence of rigid boundaries posing 
severe restrictions to scaling freedom. The sets xi  and +(x i )  change discon- 
tinuously from one chain to the next. Averaging over a convenient nwnber of 
successive step, we may write 

where op is the average polymer volume fraction of the complete system. 
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Integrating over i, we obtain the final formula 

lnZ, = - ln (np! )  - npNc-  - 

up being the average volume fraction between the plates. Equation (4) does not 
provide a packing entropy proportional to the number of chains. Proper 
reduction to correct thermodynamic behavior is obtained adding the con- 
figurational term. Evaluation of the energetic term yields the corresponding 
enthalpy. Introduction of the (i + 1)th chain comprising N, lattice cubes 
implies elimination of N, effective solvent molecules. The resulting change of 
the energy of the system is 

with all the x’s describing cube-cube interactions. Averaging over a conve- 
nient number of Succesgive steps, we obtain 

Integrating over i and rescaling the x ’s to the chain monomer, the enthalpy 
AH becomes 

where X = x p s  - [ x p p  + xSS(VJV,)]/2 is the effective monomer interaction 
parameter9*l0 and N, is the number of monomers per chain. V, and V, are 
lattice cube volume and monomer volume, respectively. The size of the lattice 
cube and the number of monomers per lattice cube are naturally dictated by 
the geometry of the polymer. For simplicity, each effective solvent molecule is 
assumed to fill exactly one lattice cube. Equation (4) becomes also quadratic in 
+(x )  at small concentrations. The distinction between number of monomers, 
number of lattice cubes, and number of configurational strands per chain 
implies simple scaling laws for the related energetic, configurational, and steric 
parametem. For sufficiently long chains containing N beads, we consider the 
configurational partition function 
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where 

where 3 k T / C  is the average square distance between consecutive beads and 

accounts for both steric and energetic interactions due to inhomogeneity of 
the environment; uG is the number of cubes per Gaussian strand and xfE 
characterizes the effective energetic interaction of a strand with its environ- 
ment. Equation (4.1) consistently requires that xfE = 2XG, where TiG is the 
already defined monomer interaction parameter, multiplied by the number of 
monomers contained in each strand. Use of eq. (7) to investigate single chain 
statistics in 8 conditions (X‘ = f) at moderate concentrations confirms this 
result independently. 

2, and 2, have ideal Gaussian form. The length a defines the size of the 
statistical cube of the lattice. From eqs. (6) and (7) we obtain in the case of 
large L, with mostly uniform density profiles, 

ln ZCmf = n,ln no + nph  2, (9) 

where no is the total number of lattice sites and ln 2, has the ideal Gaussian 
form. The term n p h n 0 ,  subtracted from eq. (9) and added to eq. (4), 
reestablishes its correct thermodynamic limit and yields the Flory-Huggins 
expression for the packing entropy in the case of large separation between 
plates. Transfer of n,ln no to the packing term is done by redefining the x 
component of the partition function as gX = (a/L)Z,. With this change, gx 
tends to Z,‘I3 as L + 00, therefore allowing direct comparison with the chains 
of the bulk solution. For finite plate separation, eq. (7) includes contributions 
due to steric and energetic interaction with the medium, already accounted 
for in eqs. (4) and (5). Further subtraction of the ideal term -npln 2, yields 
the effective configurational free energy 

Fcmf vanishes for large separation between plates. Equation (lo), correspond- 
ing to the “bare” redefinition mentioned in the Introduction, represents the 
average change of configurational free energy experienced by the chains 
because of plate confinement. Equation (7) expresses the partition integral in 
Gaussian form. The size of the Gaussian unit must be chosen conveniently. In 
the vicinity of a plate, avoidance of forbidden internal crossings is approxi- 
mately guaranteed choosing a separation of the order of the Kuhn segment 
between successive beads, because shorter strands do not obey Gaussian 
statistics. More intuitive formulation of the problem can be made as follows. 
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The dimension of a Gaussian coil is of the order of the radius of gyration. If 
the subcoil persistence length is smaller than its size, a substantial number of 
internal configurations leave both extremes on the right side of the plate, 
pushing parts of the submolecule inside the forbidden region. Imposing a 
condition of quantitative correspondence between coil radius and persistence 
length, a reasonable compromise between. configurational accuracy and obedi- 
ence to constraints is reached. Using known expressions for radius of gyration 
and persistence length," 

3 (C, + 1)2 
nb = - 

2 c, 
i.e., nb  = 20 bonds for polystyrene. We conclude this section giving the final 
expression of the packing entropy: 

lnz,  = .h( z )  + np(l - N,) 

which reduces to standard Flory-Huggins form in the limit L -, 00. 

SELF-CONSISTENT EVALUATION OF THE PROFILE OF 
THE VOLUME FRACTION +(x) 

Introducing the reduced variables ui = xid€/2kT and the dimensionless 
quantity b = (L/2)4=-, we obtain the following expression for gx: 

(12) 
- 1  
2% = 2bz:/3(~~( + I B N- II), 

where 

with 

The operator & does not have a symmetric Kernel. Equation (12) can be 
symmetrized introducing the operator 4 defined by the equation 
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The bead density p(u) can be expressed as 

Comparison with eq. (7) shows that iterated applications of the operator are 
done decreasing the order of the a d d r d  variable. Introducing the function 
g(u, s) by the equation 

and using the symmetry property 

we obtain the simple formula 

Equation (21) satisfies the condition 

Proper normalization give the total volume fraction +(u) 

Being a volume fraction, +( u) is inuuriunt with respect to the transformation 
x -, u [ # ( x )  = +(u)]. The profile of the volume fraction + ( x )  must obey 
self-consistency requirements. Numerically, we have solved the problem by 
increasing the overall volume fraction gradually from dilute conditions, with 
extended sequential stabilization. F'inal concentrations of about 90% have 
been easily obtained in this way so far. Evaluation of g(u, s) can be done 
numerically by successive applications of the operator, whose proper normal- 
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ization (division by 6 and calibration of interactive terms to register only 
deviations from the average concentration) avoids extreme numerical condi- 
tions, to large order of iteration. We have considered a few practical cases to 
illustrate trends which are probably general. Increasing concentration forces 
the profile to become more even, therefore raising the segment density in the 
vicinity of the plates. In the dilute limit, this concentration tedds to vanish, as 
assumed by diffusion equation cal~ulations.~ Finite boundary densities have 
also been reported by authors employing the lattice model.2* l3 As a significant 
example, we have chosen a polymer molecule of 22 beads, assuming that each 
strand can be decomposed into 3.3 statistical cubes. Geometric considerations 
and eq. (11) suggest identification with 20,000 MW polystyrene. In the case of 
polystyrene, u = 3.3 corresponds to having about 3 monomers per lattice 
cube, in approximate agreement with requirements of isotropic granularity. 
We have considered b = 5 to study interplate confinement and b = 25 for the 
analysis of surface tension in decoupled conditions. In the case of polystyrene, 
b = 5 corresponds to a plate separation of about 168 A, with a comparable 
unperturbed fi of 100 A. Athermal conditions (X = 0), as stated previ- 
ously, are assumed in this paper. Suitable scattering experiments provide a 
viable opportunity for measurement of size and detection of internal correla- 
tions of labeled chains. Within our mean field approximation, orthogonal 
components of the partition function are decoupled. Radii of gyration, rms 
distances between extremes, and special cases of the scattering function can be 
evaluated from the partition integral introducing virtual external fields. 

CHAIN DIMENSIONS AND SINGLE CHAIN 
SCA'lTERING FUNCTION 

The x component of the radius of gyration (S,") is defined by the equation 

where uG is the center of mass coordinate. Expressing uG in terms of the ui, 
we rewrite eq. (24) as 

Focusing first on the second term, we observe that it contains too many pairs 
( j ,  k). Using eq. (121, we can express C,,k(uiuk) = (C;U;)~ as 

where 

Analogous and more intuitive p d u r e  can be used for the calculation 
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X i (  up). All derivatives with respect to the virtual parameter can be calculated 
numerically to a satisfactory degree of accuracy. Restricting virtual influence 
to the extremes, the mean square end-bend distance is generated. Calcula- 
tion of the scattering function presents more complex problems, due to 
coupling between different components of the position vectors. The case of 
scattering vectors parallel to the plates is ideal, within our configurational and 
statistical approximations valid for concentrated systems. For scattering vec- 
tors perpendicular to the surfaces, a simple mathematical procedure can be 
developed, similar to that used for the evaluation of the radius of gyration. 
From the definition 

simple calculations yield 

s(Q) = si(Q,) + SJQ,) 
with 

Introducing the quantity r = we obtain 

with 

Extension to the calculation of &( Q,) is straightforward. As before, numerical 
evaluation of the double derivative is easily accessible with and without 
surface adsorption. 

Distinction between reversible and permanent adsorption is often discussed 
in the literature.8 Final classification requires balance of all variables poten- 
tially altered by probing equilibrium conditions (separation between plates 
and concentration, specifically). Within the general framework of our ap- 
proach, we account for adsorption introducing potential wells at the two 
surfaces. Two parameters are needed: depth and related width of the poten- 
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tial well, assumed to be of semi-Gaussian form for all strands: 

a= 1 

- a = 5  

I I I I 

where Au is the distance from the surface, normalized according to the 
definition of the reduced variable u used in eqs. (12) and (13). We have chosen 
coniigurational strands of the order of the Kuhn segment. Therefore, effective 
interaction between plate and statistical unit must extend to a distance 
comparable with its size. To this extent, values of z of order unity are 
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Fig. 2. Polymer volume fractions in the intermediate region between the plates ( + B )  and at 
the adsorption surfaces (+s) vs. adsorption energy a. Average volume fraction and plate distance 
are up = 0.1 and 2 b  = 10, respectively. 
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Fig. 3. 
Q 

Transverse components of the radius of gyration (g ), for up = 0.1 and 0.4. 

physically meaningful. We have taken z = 3. Two significant concentrations 
have been considered: up = 0.1 and 0.4. In each case, a has been varied over a 
substantial range. For up = 0.1, the value a = 1 (corresponding to an adsorp- 
tion energy of about 0.1 KT per monomer) appears to be sufficient for 
compensation of surface depletion and flattening of density profile. At a = 
3.5-4, migration of polymer matter toward the surfaces increases sharply, 
leaving the interplate region at  concentration levels orders of magnitude 
smaller than the average value up. In most experiments,'2 the average inter- 
plate concentration may change with a (i.e., temperature). Keeping it fixed is 
experimentally conceivable. For b = 5, Figure 1 shows the density profile at  
different values of the adsorption constant with a global concentration of 
up = 0.4. u is the normalized distance from the center of the interplate region. 
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Fig. 4. Normalized scattering function S(r) for different ~ a l u s  of o,, and a. S,(r) is the 
r 

Debeye function of corresponding to the true value of (S,'). 
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Figure 1 shows that the depletion (adsorption) layer has a size which does not 
depend on the intensity of the adsorption constant and is determined princi- 
pally by the dimension of the con6gurational unit. The influence of surface 
adsorption on the interplate concenhtion is much more dramatic at low 
global concentrations, as mentioned before. For up = 0.1, surface volume 
fraction and interplate concentration +B are reported in Figure 2. Figure 3 
shows the dependence of the radius of gyration (S,”) on the adsorption 
constant a, with b = 5: insensitivity at up = 0.4 and dramatic decrease at the 
lower concentration up = 0.1, as expected from single chain system.’* The 
scattering function S(r) is plotted in Figure 4 at the two concentrations, for 
several values of a. S#) is the Debeye function, constructed using the true 
value of the radius of gyration (5’:). Values of Q, higher then 0.1 A-’ have 
not been considered. hecause discrete Gaussian models fail in those conditions. 

CALCULATION OF SURFACE TENSION 

Surface tension is another property of confined polymer systems which 
requires specific reference to the polymer persistence length. The case of 
polymer surfaces bounded by media of low entropic and energetic exchange 
activity can be dealt with, assuming the existence of effective boundary 
surfaces. Separation of the total free energy into bulk term and surface 
contribution provides the operational definition of the surface tension, In the 
caae of polymer systems between plates, we may apply this definition evaluat- 
ing the total free energy per unit area, subtracting the uniform contribution, 
letting the plate separation go to infinity, and dividing by 2. In practice, our 
numerical approach requires large plate distances: L - 8 - 9 m  reduces the 
positive extra free energy of interaction to relative fractions of about one 
percent. Application of eqs. (4), (5), and (10) gives the three separate extra 
terms of the free energy, interpretable as surface contributions arising from 
the plate regions. Reduction to unit area is done by the formula 

where VG is the volume per bead and A the plate area. The surface tension y 
becomes 

(35’) 
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Fig. 5. Dimensionless surface tension r, calculated as a function of concentration for b = 25 
and perfectly repulsive boundaries. 

n, being the number of monomers per Gaussian strand, since j j  is dehed  
with respect to the monomer unit. 2/Z: l3  is obtained from eq. (12). For 
purposes of calculation the finite value b = 25 is sdcient.  Energetically 
indifferent mixing has been assumed (good solvent). Practical calculations on 
our model polymer containing 22 beads cover the range up = 0.1-0.85. The 
configurational contribution appears to dominate at all concentrations. Pread- 
justment of the density baseline enveloping the interactive terms reduces the 
correction contained in eq. (10) to deceivingly small values of about 20%, even 
at the higher concentrations. Calculated values of I', are reported in Figure 5. 
The slope of this curve is 2: 1.31. For strands of 20 PS bonds, V, = 1800 A3. 
Taking T = 300 K, and Using configurational data (C, = lo), we obtain 
y = 2r, (erg/cm2). Extrapolation of our resulta to the bulk and multiplication 
by two gives y = 1-2 erg/cm2. Comparison with demixed polymer data15 is 
only indicative, because of finite interfaces16 and mismatch of compressibility. 
Remarkably, the indication appears to be quantitatively correct in the case of 
PMMA and PS, whose separate y 's are almost identical.15 Perfectly repulsive 
boundaries have been assumed in this calculation. Doubling of molecular 
weight (44 beads) does not introduce relevant changes of r,. 

DISCUSSION 

Our molecular treatment of plate adsorption and surface tension uses finite 
sizes of the Gaussian unit. Correct unperturbed dimensions are obtained in the 
limit of large plate separation. The approximate Gaussian connection between 
end-bend distance and free energy of the configurational strand does not 
allow intolerable crossings of monomers belonging to the "real" subunit. At  
high concentrations the depletion (adsorption) region tends to become of the 
order of the subunit dimension. On the other hand, weaker variations of total 
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concentration extend to the whole interplate region. Coupling between surface 
effects and long range alterations proves to be important for reliable predic- 
tion of surface tension. It is probably also important for an elementary 
Understanding of reversible adsorption. Identification of our model chain with 
polystyrene is tentative, in the absence of additional information. 

The author wishes to thank H. R. Brown and T. P. Russell for very helpful discussions. 
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